G

BG SYSTEMS, INC.

JFx JovysTick

TCP SoFTWARE INTERFACE

Revision 1.00

June 21, 2011

UNRESTRICTED DISTRIBUTION

Table of Contents

1 Document Purpose

1.1 Conventions

2 Software

2.1 Startup

2.1.1 Initialization

2.1.2 Open Sockets
2.1.2.1 set_socket_data()
2.1.2.2 create_socket()
2.1.2.3 create_multicast_socket()
2.3 Setup

2.4 Data Packet

2.5 Data Conversion

2.6 CRC Checking

2.7 Configuration API
2.7.1 Update Rate

2.7.2 IP Address

2.7.3 Multicast Address
2.7.4 Multicast Port
2.7.5TTL

BGS-TCP-01 JFx TCP Software Manual

W 0w N O PrMPMDAMOWWOWNN

L G |
N = = O ©

1 Document Purpose

This document describes in detail the software interfaces for the BG Systems, Inc. JFx Josytick with
TCP option.

1.1 Conventions

Throughout this ICD the following fonts are used to differentiate software code written on the host,
button identification on the HCU, the state of the HCU, and any actions.

Software code Example software for an XP host application appear in the monotype font.

BuTtToNn Buttons are identified in the body of the text as all caps in this font.

BGS-TCP-01 JFx TCP Software Manual

2 Software

The JFx-tcp joysticks have an OB1K-ARM-12 microcontroller inside the joystick enclosure. The
MCU has firmware which communnicates data to computers on a local area network by the TCP socket
protocol.

This section contains code fragments to illustrate the communication protocol and certain com-
mands that can be sent to the MCU.
// Example of a comment

Source code is provided and can be downloaded from www.bgsystems.com

2.1 Startup
On startup the initial IP address will be set to 192.168.1.10. The TCP packets are 64 bytes long.

The following sections shows startup from an XP application from tcp_jf_main.cpp

2.1.1 Initialization

The example code below is not complete, and there are fragments from header files. The intent is to
demonstrate how to communicate with the MCU from a host software application.

For convenience a data structure is defined to contain pertinent information. The data structure is
defined in bg_tecp.h

typedef struct BG IP {

char ip name[24]; // default host name

SOCKET ip_ socket; // regular socket

struct sockaddr in ip addr; // socket IP address

char multicast name[24]; // multicast group name

SOCKET multicast socket; // multicast socket

struct sockaddr in multicast addr; // multicast IP address

struct ip mreq bg mreq; // multicast data structure

int multicast ttl; // multicast time to live

int multicast port; // multicast port

int rate; // requested update rate
} bg_ip;

The fragment below is from the main application tcp_jf_main.cpp

WSADATA wsaData; // Winsock2

bg ip bgipdata; // BG data structure for convenience
int iResult = WSAStartup(MAKEWORD (2,2), &wsaData);

if (iResult != NO_ERROR)
printf (“Error at WSAStartup () \n”) ;printf (“.... WSAStartup() OK\n”);

The next call is to convenience function setup arm tcp () which is in the bg basic.cpp file. This
sets up the BG data structure so that the incoming data packet is converted correctly. This data structure
is common to various BG Systems firmware configurations and allows a standard conversion routine to
be used. Details about the data structure are in bg_arm2.h

BGS-TCP-01 JFx TCP Software Manual 3

2.1.2 Open Sockets

The next code fragment calls utility functions to open sockets.

// Define ip name from header for two way socket communication
// pHostName = %“192.168.1.10"

sprintf (bgipdata.ip name, “%s”, pHostName) ;
set socket data(&bgipdata.ip addr, bgipdata.ip name, DEFAULT SOCKET_ PORT) ;
// create socket for communication to MCU

ret val = create socket();
// connect socket
ret val = connect socket (bgipdata.ip_ addr) ;

2.1.2.1 set_socket_datal()

Convenience function to set the socket data structure with the host IP address and Port number.
Note that this is for the two way communication socket and not for the Multicast socket.

void set socket data(sockaddr in *pSockAddr,
const char *pHostName, int portNumber)

pSockAddr->sin family = AF INET;
pSockAddr->sin port = htons (portNumber) ;
pSockAddr->sin addr.s_addr = inet addr(pHostName) ;

2.1.2.2 create_socket()

Convenience function to create a standard IP socket to communicate with the MCU. This socket
allows data to be written to the MCU and information to be read from the MCU.
int create_ socket ()

{

printf (“Call socket\t”) ;
bgipdata.ip socket = socket (AF_INET, SOCK STREAM, IPPROTO_TCP) ;

if (bgipdata.ip socket == INVALID SOCKET)

{
printf (“Error at socket(): %1d\n”, WSAGetLastError());
WSACleanup () ;
return 0;

1

printf (“.... socket () OK\n”);

return(1l) ;

BGS-TCP-01 JFx TCP Software Manual

2.1.2.3 create_multicast_socket()

Convenience function to create a multicast socket for the host to listen to. This socket will receive
data broadcast from the MCU. Only called when the MCU is set to multicast data, which is not the

default.

int create multicast socket ()

{

printf (“Call socket for multicast\t”);

bgipdata.multicast socket = socket(AF INET, SOCK DGRAM, 0);

if (bgipdata.multicast socket == INVALID SOCKET)

{
printf (“Error at socket(): %1d\n”, WSAGetLastError());
WSACleanup () ;

return(-1) ;

}

memset (&bgipdata.multicast addr, 0, sizeof (bgipdata.multicast addr));
bgipdata.multicast addr.sin family = AF_INET;
bgipdata.multicast addr.sin addr.s addr = htonl (INADDR ANY) ;

bgipdata.multicast addr.sin port = htons(bgipdata.multicast port) ;
printf (“port %$d %$d\n”, bgipdata.multicast addr.sin port,
bgipdata.multicast port) ;
if (bind(bgipdata.multicast socket,
(struct sockaddr*)&bgipdata.multicast addr,
sizeof (bgipdata.multicast addr)) < 0)

perror (“bind failed”) ;
return(-1) ;
}
bgipdata.bg mreq.imr multiaddr.s addr = inet addr (MULTICAST_ GROUP) ;
bgipdata.bg mreq.imr interface.s addr = htonl (INADDR_ANY) ;
if (setsockopt (bgipdata.multicast socket, IPPROTO IP, IP ADD MEMBERSHIP,
(const char*) &bgipdata.bg mreq, sizeof (bgipdata.bg mreq)) < 0)

perror (“setsockopt failed”) ;

return(-1) ;
}
printf (“Open multicast socket %d OK\n”, bgipdata.multicast socket) ;
return (1) ;

BGS-TCP-01 JFx TCP Software Manual

2.3 Setup

The MCU can be configured in one of two ways:

1. Point a web browser to the IP address of 192.168.1.10 and set parameters using the form in the
browser. Note that multicast socket options are not typically used, and the update rate only applies to
the multicast option. Contact johnebgsystems.com if you have questions about this.

2. From a host application, parameters can be set. See section 3.7 for details.

2.4 Data Packet

The data packet from the multicast is retrieved as follows:

sprintf s (out buffer,

12,

st = send socket();
Sleep (1) ;
counter++;
if (st ==)
{
st = read_ socket () ;
if (<= 0)
{
bgd. run
}
st =
}

\\eu) ;

printf (*read socket st %d\n”, st);
2;

convert tcp arm(&bgdata, in buffer);

The code above makes a call to send_socket () to request a packet of data. Then there is a s1eep (1)
to allow data to be received from the MCU. A call to read_socket () actually retrieves the buffer with

the data.

This data is then passed to a convenience function convert_tcp_arm() to decode the character string

into the data structure containing analog values and switch values.

The data packet is 64 bytes for multicast, but data is only packed as follows:

str[0] 0x24 ‘S Start of data
str[1] oxff GPO 16-23

str[2] oxff GPO 8-15

str[3] oxff GPO 0-7

str[4] 0x0£00 AO0 MSB

str[5] 0x00ff A0 LSB

str[6] 0x0£00 Al MSB

str([7] 0x00ff Al LSB

str[8] 0x0£00 A2 MSB

str[9] 0x00ff A2 LSB

str[10] 0x0£00 A3 MSB

str[11] 0x00ff A3 LSB

str([12] 0x0£00 A4 MSB

str[13] 0x00ff A4 LSB

BGS-TCP-01 JFx TCP Software Manual 6

str[14] 0x0f00 A5 MSB

str[15] 0x00ff A5 LSB

str[le] 0x0f00 A6 MSB

str([17] 0x00ff A6 LSB

str[18] 0x0f00 A7 MSB

str[19] 0x00ff A7 LSB

str[20] Oxff Counter

str[21] oxff CRC

str[22] Oxff CRC

str[23] 0x0a ‘\n’ End of packet

2.5 Data Conversion

Data from the MCU is sent as a 64 byte multicast packet. The packet is read by read_socket ()
and returns a character buffer. This character buffer is passed to the convert_tcp_arm() function which
scans the characters and puts them into the BG data structure. The conversion function is the generic

BG Systems function. The example below shows a part of conversion routine.:

int convert tcp arm(bgarm2 *bgp, char *str)

{
int i, digp, J:
int k = 0;
int st;
int len = 0;
digp = 0;
i=1;
/*
* Load the GPIO 0 digital input values into dinO
*/
if (bgp->dig in & GPO && ((bgp->dig conf & GP0) != GPO))
{
for (j = 2; j >= 0; j--)
bgp->gp0[j] = 0xff & str[i++];
}
/*
* Load the 8 12-bit analog values into inbuf
*/
for (k = 0; k < 8; k++)
{
if (bgp->analog inl2 & (0xl << k))
{
digp = ((0x0f & str[i++]) << 8);
digp |= (Oxff & str[i++]);
bgp->ainl2[k] = (100.0 * ((float)digp/4095.0)) ;
bgp->raw_ainl2[k] = digp;
}
}

The example above would be the part of the routine used by a joystick to load buttons and analog

values.

BGS-TCP-01 JFx TCP Software Manual

2.6 CRC Checking

In the convert_tcp_arm() function there is a CRC check to ensure that the data received is valid.
The last two characters of the data string contain the CRC value which is also computed
// Perform CRC check

bgp->crc_error = 0;
len = bgp->str len;

crcl = (((str[len-3]&0xff)
| ((strl[len-2]&0xff)<< 8))
& Oxffff);
crc = Oxffff;
for (1 =1; 1 <= (len-4); i++)
crc = (crc >> 8) * crc_tablel(crc * (strl[i])) & Oxff];
crc = (~crc) & Oxffff;
if (crc - crcl != 0)
{
bgp->crc_error = 1;

printf (“crc error\n”) ;

2.7 Configuration API

There are five states for the MCU that can be configured and there are two ways to configure these
states. From a host computer a web browser can connect to the MCU which brings up a configura-
tion page with text fields showing the current state of the configurable parameters: Update Rate (Rate),
IP Address (IP), Multicast Address (MA), Multicast Port (MP), and Time to Live (TTL). To change a

parameter, just enter a new value and then click on the button labeled “Update Settings”.

Note that in general the multicast option is not used, and the key item that you may want to change
is the IP address. If you have more than one joystick on a network they should have unique IP addresses.
Of course once you have changed the IP address, you must make a note of the new IP address in order
to communicate with the joystick. If you are using the API to set the IP address from within a program,
then you will have to close the default socket and open a new socket with the new IP address.

The parameters can also be set from host software using an open socket (see section 2.1.2). Once the
socket is open it can be used to configure the parameters as shown below. It is of course crucial that the
socket is open to the correct IP address, so if you change the IP address of the MCU the socket will have
to be closed and re-opened with the new IP address.

The following sections indicate how the parameters can be retrieved from the MCU and set to the
MCU. In the sections below, the following global variables are used:

extern bg ip bgipdata; // data structure defined in bg tcp.h
extern char in buffer[128]; // buffer for reading data from MCU
extern char out buffer([12]; // buffer for sending data to MCU

Section 2.7.1 will explain in some detail how to handle socket communication with the MCU and
the following sections will be limited to key details.

BGS-TCP-01 JFx TCP Software Manual 8

2.7.1 Update Rate

To retrieve the update rate, we simply make a call to get_rate() which contains the following code:
void get rate()

{

int st;

sprintf s(out buffer, 12, “%c%c%c”, COMMAND, READ, RATE) ;
st = send_socket () ;

if (st < 0)
printf (“error sending socket\n”) ;

st = read_socket () ;
if (st < 0)
printf (“error reading socket\n”) ;

bgipdata.rate = (int)in buffer[0];

In the code above, the out_buffer is set with three characters:

COMMAND
READ
RATE

These are defined in bg_tcp.h. COMMAND indicates that the MCU is receiving a command from
the host, READ means that the host wants to read data from the MCU, and RATE is the parameter to
be read. This information is sent to the MCU with the send_socket() convenience function. If there is
no error, then we can read_socket() which returns data back in the in_buffer[]. In this case the rate is an
integer returned in the first character of the buffer.

To set the update rate:
void set rate()

{

int st;
char txt[4];
int i = 0;
for (1 =0; 1 < 4; i++)
txt [1] = 0x0;
txt [0] = bgipdata.rate; // Must be 10 or 100

sprintf s(out buffer, 12, "“%c%c%c%c”, COMMAND, WRITE, RATE, txt[0]);
st = send socket () ;

if (st < 0)
printf (“error sending socket\n”) ;

In the code above, a character buffer is set to null, and then the first character is set with the bgip-
data.rate data member. This should be set by the host software to either 10 or 100 for the update rate in

BGS-TCP-01 JFx TCP Software Manual 9

Hz. Then the out_buffer is set with four characters:

COMMAND
WRITE
RATE
txt [0]

As before, the COMMAND tells the MCU that it is receiving a command from the host, WRITE
indicates that the host is sending information, RATE indicates the parameter being set, and txt[0] is the

value being sent.

The convenience function send_socket() is then called to actually send the data.

2.7.2 IP Address

To retrieve the current IP address of the MCU we call
void get ip ()

{

int st;

struct in addr in;
char *ip buf;

sprintf s(out buffer, 12, “%c%c%c”, COMMAND, READ, HOSTIP) ;
st = send_socket () ;
if (st < 0)

printf (“error sending socket\n”) ;

st = read_socket () ;
if (st < 0)
printf (“error reading socket\n”) ;
.S un b.s bl = in buffer([3] & O0xff;

in.S_un
in.S un
in.S_un
in.S un
ip buf

.S un b.s b2 = in buffer([2] &
.S un b.s b3 = in buffer[1l] & O0xff;
.S un b.s b4 = in buffer[0] &

Oxff;

Oxff;
inet ntoa(in);

ngpdata.ip_addr.sin_addr.s_addr = inet addr (ip buf) ;

}

This function is similar to get_rate() but the data retrieved needs manipulation to get it into a use-

able format.

The command itself is straightforward with HOSTIP being the parameter to be READ. The data
returned is in four bytes and they need to be put into the in_addr data structure which is then passed to
the system call inet_ntoa to convert to a string which can be passed to inet_addr() which can be used to

fill the bgipdata member.
To set the IP address:
void set ip()
{
int st;
char txt[4];
int 1 = 0;
for (1 = 0; 1 < 4; i++)
txt [i] = 0x0;
txt [0] = bgipdata.ip addr.sin addr.S un.S un b.s b4;
txt [1] = bgipdata.ip addr.sin addr.S un.S un b.s b3;
txt [2] = bgipdata.ip addr.sin addr.S un.S un b.s b2;

BGS-TCP-01 JFx TCP Software Manual 10

txt [3] bgipdata.ip addr.sin addr.S un.S un b.s bil;

nw

sprintf s(out buffer, COMMAND, WRITE, HOSTIP,
txt [0], txt[1],

send_socket () ;

12,
txt[2

% c%c
1, txtI[3

st

if (st < 0)

printf (“error sending socket\n”) ;

In this case the data to be sent is put into four bytes of the txt[] array as shown above.

2.7.3 Multicast Address

Reading and setting the multicast address is done in the same manner as the IP address. The code

void

{

void

fragments below are not complete, but contain the important information:

get multicast ip()

12, “%c%c%c”, COMMAND, READ, MULTIP) ;

sprintf s(out buffer,

st = send socket () ;

st = read socket();

in.S un.S un b.s bl = in buffer[3] & O0xff;

in.S un.S un b.s b2 = in buffer[2] & Oxff;

in.S un.S un b.s b3 = in buffer[1l] & O0xff;

in.S un.S un b.s b4 = in buffer[0] & Oxff;

ip buf = inet ntoa(in);

bgipdata.multicast addr.sin addr.s_addr = inet addr (ip_buf) ;

set multicast ip()

txt [0] = bgipdata.multicast addr.sin addr.S un.S un b.s b4;

txt [1] = bgipdata.multicast addr.sin addr.S un.S un b.s Db3;

txt [2] = bgipdata.multicast addr.sin addr.S un.S un b.s b2;

txt [3] = bgipdata.multicast addr.sin addr.S un.S un b.s bl;

sprintf s(out buffer, 12, “%c%c%c%c%c%c%c”, COMMAND, WRITE, MULTIP,
txt[0], txt[1], txt[2], txt[3]);

st send_socket () ;

2.7.4 Multicast Port

To read the multicast port:

BGS-TCP-01 JFx TCP Software Manual

11

void get multicast port ()

{

sprintf s(out buffer, 12, “%c%c%c”, COMMAND, READ, MULTPORT) ;

st = send_socket () ;
st = read_socket () ;
bgipdata.multicast port = (in buffer[1] & Oxff) << 8

| (in_buffer[0] & Oxff);
}

To set the multicast port:

void set multicast port ()

{

txt [0] = (bgipdata.multicast port & O0xff) ;
txt [1] (bgipdata.multicast port & 0xff00) >> 8;

o°
o°

sprintf s(out buffer, 12, “%c

txt [0], txtl[1]);

st = send_socket () ;

2.7.5TTL
To read TTL:

void get multicast ttl()

{

sprintf s(out buffer, 12, “%c%c%c”, COMMAND, READ, TTL);
st = send socket () ;

st read_ socket () ;

bgipdata.multicast ttl = in buffer[0];

To set TTL:

void set multicast ttl()

{

txt [0] = bgipdata.multicast ttl;
sprintf s(out buffer, 12, “%c%c%c%c”, COMMAND, WRITE, TTL,
st = send socket () ;

BGS-TCP-01 JFx TCP Software Manual

c%c%c%c”, COMMAND, WRITE, MULTPORT,

txt [0]) ;

12

